12

COMPUTER SCIENCE-MATHEMATICAL SCIENCES B.S. (COMBINED MAJOR)

The purpose of the combined program is to provide a thorough background in both allied disciplines and to inculcate a deeper understanding of their goals and methods. A student must complete 62 credits in the two disciplines:

- · 31 of these credits in Computer Science courses and
- · 31 of these credits in Mathematical Sciences courses.

Each student plans a program in consultation with a Computer Science and a Mathematical Sciences advisor. Students planning to attend graduate school in computer science or the mathematical sciences should consult with their respective advisors.

Bachelor of Science - Computer Science- Mathematical Science

General Education Requirements

Information regarding these requirements can be found in the General Education Section (http://catalog.umt.edu/academics/general-education-requirements/) of the catalog.

Summary

Code	Title	Hours
Mathematical S	Science	31
Computer Scie	nce	31
Science Requir	ement	9-10
Biology Seq	uence Option	
Chemistry S	equence Option	
Physics Seq	uence Option	
Public Speakin	g Requirement	3
Total Hours		74-75

Degree Specific Credits: 74-75

Required Cumulative GPA: 2.0

Mathematical Sciences

Rule: Complete the following subcategories. 31 total credits required.

Mathematical Sciences Core

	Code	Title	Hours
Complete all of the following courses:			
	M 171	Calculus I	4
	or M 181	Honors Calculus I	
	M 172	Calculus II	4
	or M 182	Honors Calculus II	
	M 221	Introduction to Linear Algebra	4
	M 273	Multivariable Calculus	4
	M 307	Introduction to Abstract Mathematics	3

Total Hours		19
or M 225	Introduction to Discrete Mathematics	

Minimum Required Grade: C-

Mathematical Sciences Electives

Note: The combined 9 credits of Computer Science Electives and twelve 12 credits of Mathematical Sciences Electives must include at least three 3 or 4 credit courses numbered 400 or above, with at least one chosen from each department (not including M 429 and STAT 451, STAT 452).

Code	Title	Hours
Complete 12 cred	lits of the following courses:	12
M 274	Introduction to Differential Equations	
M 325	Discrete Mathematics	
M 326	Number Theory	
M 361	Discrete Optimization	
M 362	Linear Optimization	
M 381	Advanced Calculus I	
M 412	Partial Differential Equations	
M 414	Deterministic Models	
M 429	History of Mathematics	
M 431	Abstract Algebra I	
M 432	Abstract Algebra II	
M 439	Euclidean and NonEuclidean Geometry	
M 440	Numerical Analysis	
M 445	Statistical, Dynamical, and Computational Modeling	
M 461	Data Science Analytics	
M 462	Theoretical Basics of Big Data Analytics and Real Time Computation Algorithms	
M 472	Introduction to Complex Analysis	
M 473	Introduction to Real Analysis	
M 485	Graph Theory	
STAT 341	Introduction to Probability and Statistics	
or STAT 342	Probability and Simulation	
STAT 421	Probability Theory	
STAT 422	Mathematical Statistics	
STAT 451	Statistical Methods I	
STAT 452	Statistical Methods II	

Minimum Required Grade: C-

Computer Science

Total Hours

Rule: Complete the following subcategories. 31 total credits required.

Computer Science Core

Code	litle	Hours	
Complete all of the following courses:			
CSCI 106	Careers in Computer Science	1	
CSCI 150	Introduction to Computer Science	3	
CSCI 151	Interdisciplinary Computer Science I	3	
CSCI 152	Interdisciplinary Computer Science II	3	

CSCI 232	Intermediate Data Structures and Algorithms	4
CSCI 258	Web Application Development	3
CSCI 332	Advanced Data Structures and Algorithms	3
CSCI 340	Database Design	3
Total Hours		23

Minimum Required Grade: C-

Computer Science Electives

Rule: In addition to the 22 credits in the Computer Science core, students must take an additional 9 upper division (three hundred level or higher) Computer Science credits.

Notes:

- 1. A total of at most three of the 9 credits of Computer Science Electives may be in CSCI 398 or CSCI 498.
- 2. The combined 9 credits of Computer Science Electives and twelve credits of Mathematical Sciences Electives must include at least three 3 or 4 credit courses numbered 400 or above, with at least one chosen from each department (not including M 429 and STAT 451, STAT 452).

Code	Title	Hours
Complete 9 c	credits of upper-division (300-level or higher) s.	9
Total Hours		9

Minimum Required Grade: C-

Science Requirement

Rule: Complete the course work from 1 of the following subcategories. 9-10 total credits required.

Biology

Code	Title	Hours
If you choose bid	ology, complete all of the following courses:	
BIOB 160N	Principles of Living Systems	3
BIOB 161N	Principles of Living Systems Lab	1
BIOB 170N	Principles of Biological Diversity	3
BIOB 171N	Principles of Biological Diversity Lab	2
Total Hours		9

Minimum Required Grade: C-

Chemistry

Code	Title	Hours
If you choose ch courses:	emistry, complete all of the following	
CHMY 141N & CHMY 142N	College Chemistry I and College Chemistry I Lab	5
CHMY 143N & CHMY 144N	College Chemistry II and College Chemistry II Lab	5
Total Hours		10

Minimum Required Grade: C-

Physics

Code

Code	Title	Hours
If you choose p	physics, complete all of the following courses:	
PHSX 215N	Fundamentals of Physics with Calculus I	4
PHSX 216N	Physics Laboratory I with Calculus	1
PHSX 217N	Fundamentals of Physics with Calculus II	4
PHSX 218N	Physics Laboratory II with Calculus	1
Total Hours		10

Minimum Required Grade: C-

Public Speaking Requirement Title

00	Juc	THE	110013
Complete 1 of the following courses:		3	
	COMX 111A	Introduction to Public Speaking	
	COMX 242	Argumentation	
To	tal Hours		3

Hours

Minimum Required Grade: C-

Suggested Curricula

Note: Students are encouraged to choose their Computer Science and Mathematical Sciences Electives according to one of the following curricula; these tracks are suggestions only and, as such, optional. Note that the suggested curricula do not include an advanced College Writing Course.

Applied Math-Scientific Programming

Applica matil	ocicitatio i rogramming	
Code	Title	Hours
M 274	Introduction to Differential Equations	3
M 412	Partial Differential Equations	3
M 414	Deterministic Models	3
Select one of the	he following:	3-4
M 381	Advanced Calculus I	
M 440	Numerical Analysis	
M 472	Introduction to Complex Analysis	
M 473	Introduction to Real Analysis	
STAT 341	Introduction to Probability and Statistics	
Select three of	the following:	9
CSCI 441	Computer Graphics Programming	
CSCI 444	Data Visualization	
CSCI 460	Operating Systems	
CSCI 477	Simulation	
Total Hours		21-22

Combinatorics and Optimization-Artificial Intelligence

Code	Title	Hours
M 361	Discrete Optimization	3
M 362	Linear Optimization	3
Select two of th	6	
M 325	Discrete Mathematics	
M 414	Deterministic Models	
M 485	Graph Theory	
STAT 341	Introduction to Probability and Statistics	

CSCI 446	Artificial Intelligence	3
CSCI 447	Machine Learning	3
CSCI 460	Operating Systems	3
Total Hours		21
Data Caianas (Bi	in Data Analytica)	
Code Code	g Data Analytics) Title	Hours
M 461	Data Science Analytics	3
M 462	Theoretical Basics of Big Data Analytics	3
	and Real Time Computation Algorithms	
STAT 341	Introduction to Probability and Statistics	3
STAT 451	Statistical Methods I	3
STAT 452	Statistical Methods II	3
Select three of th	e following:	9
CSCI 444	Data Visualization	
CSCI 447	Machine Learning	
CSCI 448	Pattern Recognition	
CSCI 464	Applications of Mining Big Data	
CSCI 480	Applied Parallel Computing Techniques	
Total Hours		24
Statistics-Mach	ine Learning	
Code	Title	Hours
STAT 341	Introduction to Probability and Statistics	3
STAT 421	Probability Theory	3
Select two of the		6
M 325	Discrete Mathematics	
M 362	Linear Optimization	
M 485	Graph Theory	
STAT 422	Mathematical Statistics	
Select three of th	e following:	9
CSCI 340	Database Design	
CSCI 444	Data Visualization	
CSCI 446	Artificial Intelligence	
CSCI 447	Machine Learning	
CSCI 451	Computational Biology	
Total Hours		21
Algebra-Analysi		
Code	Title	Hours
M 381	Advanced Calculus I	3
M 431	Abstract Algebra I	4
Select two of the	•	7-8
M 326	Number Theory	
M 432	Abstract Algebra II	
M 472	Introduction to Complex Analysis	
M 473	Introduction to Real Analysis	
CSCI 426	Software Design & Development I	3
CSCI 460	Operating Systems	3
CSCI Elective		3
Total Hours		23-24